Category Archives: Paleontology

Genetic data from 1.7 million years ago identified, the oldest recorded to date

The journal Nature has reported the finding of a rhinoceros tooth at the site in Dmanisi, Georgia, where members of IPHES and the URV are working

Molar found in Dmanisi and which has provided the genetic information discussed in the article

catalàespañolmore photos

A recent finding has paved the way to a revolution in the study of evolution after an international team working in Dmanisi (Georgia) has acquired genetic data from a 1.7-million-year-old rhinoceros tooth, the oldest to have been identified to date. The data acquired is a full set of proteins – a proteome – identified in the animal’s dental enamel and is 1 million years older than the oldest DNA sequenced from a horse and which dates back 700,000 years.

The finding was announced in an article published in the journal Nature, which was authored by leading scientists from the University of Copenhagen and Saint John’s College (University of Cambridge). However, the project also counted on the participation of 48 other researchers, two of whom were ICREA (Catalan Institute of Research and Advanced Studies) researchers from IPHES (Catalan Institute of Human Palaeoecology and Social Evolution) and the URV (Universitat Rovira i Virgili): Bienvenido Martínez-Navarro, who studies the large carnivores at Dmanisi (bears, hyenas and sabre-toothed tigers), and Jordi Agustí, who analyses the small mammals from the same site, which has become one of the main sources of information on the first humans.

Molar found in Dmanisi and which has provided the genetic information discussed in the article. Credits: Natural History Museum of Denmark

The finding reported in Nature is a major advance in the field of biomolecular studies into ancient fossil remains and may provide an answer to some of the mysteries of animal and human biology, enabling scientists to accurately reconstruct evolution over time, now from much further back in the past.

In the last 20 years, ancient DNA has been used to tackle a variety of questions about the evolution of extinct species, adaptation and human migration, but it has its limits. The new genetic information will make it possible to reconstruct molecular evolution beyond the habitual time limits of the preservation of DNA, so the analysis of ancient protein from dental enamel is the start of an exciting new chapter in the analysis of molecular evolution, as the scientists participating in the study have been quick to point out.

The DNA data that genetically track human evolution only cover the last 400,000 years. But the lineages that led to modern humans and chimpanzees – the living species that is genetically closest to humans – separated some 6 or 7 million years ago, which means that the scientific community currently has no genetic information for 90% of the evolutionary path that has led to modern humans.

Neither does the scientific community know how we are genetically linked to extinct species such as Homo erectus – the oldest species known of the genus Homo with human body proportions similar to those of Homo sapiens. Everything known about Homo erectus at the moment is almost exclusively based on anatomic, not genetic, information.

Stephonorhinus rhinoceros skeleton. Credits: Natural History Museum of Denmark.

The researchers used ancient sequencing technology (based on the innovative technology known as mass spectrometry) to retrieve genetic information from the tooth of a 1.7-million-year-old Stephanorhinus, an extinct species of rhinoceros that lived throughout Mediterranean Europe and in western Asia. They managed to sequence the ancient protein and retrieved genetic information that had been impossible to obtain with DNA sequencing.

Tooth enamel is extremely hard, abundant and long-lasting. It is found in mammals and provides more genetic information than collagen, the only other protein that has been retrieved from fossils more than a million years old. As a result, applying mass spectrometry to this material opens up a wide range of possibilities for a more advanced evolutionary study in both humans and mammals, and it will revolutionise research methods based on molecular markers.

Molecular phylogenetic analyses show that the Stephanorhinus rhinoceros comes from a group related to the woolly rhinoceros (Coelodonta antiquitatis). This shows that Coelodonta evolved from a primitive representative of Stephanorhinus which, therefore, has at least two evolutionary lines.

This rearrangement of the evolutionary lineage of a single species may seem like a mere small adjustment, but the identification of changes in numerous extinct mammals and humans may lead to a new understanding of how the world has evolved. The discovery may enable scientists from all over the world to collect genetic data  from ancient fossils and construct a larger, more accurate picture of the evolution of hundreds of species, including our own.

Bibliographic reference. Cappellini et al., “Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny”, Nature  (2019).

Abundant molds of wooden remains were found in the Abric Romaní site evidences from 60,000 years old Neanderthal communities

They were discovered during the excavation, conducted since August 5th and will end next Wednesday

This fieldwork season celebrate the 110 years of the discovery of prehistoric remains, in this site. Since then, 36 annual campaigns have been held

catalàespañolphotosNEAN Park

Abric Romaní preserves traces of some plants remains, including wood, thanks to the precipitation of carbonates over them. After the decay of the wood or vegetal materials, only its footprints remain as negatives. Author: Palmira saladié/IPHES

From the 5th of August to the 28th, the annual archaeological excavation is being carried out at the Abric Romaní site in Capellades (Barcelona, Spain). A group of 35 people have been collaborating in the excavation tasks under the coordination of Dr. M. Gema Chacón, Dr. Josep Vallverdú and the Dra. Palmira Saladié, three researchers from the IPHES (Catalan Institute of Human Paleoecology and Social Evolution). The other doctors and participating students come from this research center, from the URV (Rovira i Virgili University of Tarragona, including the Erasmus Mundus Master in Quaternary and Human Evolution Archeology) and other Spanish and international institutions.

The continuation of the level R excavation will allow the analysis of the whole archaeological assemblage and especially the hearths preserved on the surface of the shelter. Author: Palmira Saladié

Abric Romaní is an important site with archaeological remains, evidence of Neanderthal life. Sixteen archaeological levels have been fully excavated until nowadays, in an area of 300 m2. We have documented different types of occupations, suggesting societies with high mobility and with complex social structures. The mainly hunted species are reed deer, horse, aurochs and rhinoceros. The tools associated were mostly made of flint and limestone, and probably on wood.

Reed deer (Cervus elaphus), one of the mainly hunted species – Palmira Saladié/IPHES

This season is the 110 anniversary of the discovery of prehistoric remains in this site and since then 36 annual campaigns have been held. This year, the works were focused on the excavation of level R dated to 60,000 years old. Although it is the beginning of the level excavation, and the remains of fauna and the stone tools have not already been studied, we can document a very important amount of wood negatives or molds. Abric Romaní preserves traces of some plants remains, including wood, thanks to the precipitation of carbonates over them. After the decay of the wood or vegetal materials, only its footprints remain as negatives.

If the presence of some wood tool can be attested, the knowledge of wooden tools productions during the Middle Paleolithic could by implemented, given the perishable nature of wood. The continuation of the level R excavation will allow the analysis of the whole archaeological assemblage and especially the hearths preserved on the surface of the shelter. All this data will permit a better knowledge about the Neanderthal lifestyle.

A new species of reptile: a lizard without legs that lived in Murcia one million years ago

The discoverers have dedicated the new species to the paleontologist Miguel Ángel Mancheño, first director of the excavations in the Murcian site of Quibas, where it has appeared

The findings shows that the southeast of the Iberian Peninsula was the last ecological refuge for subtropical species in Western Europe

catalàphotosespañol

Hugues-Alexandre Blain, researcher at IPHES (Institut Català de Paleoecologia Humana i Evolució Social), in collaboration with Salvador Bailon from the National Museum of Natural History in Paris (MNHN), have described a new species of lizard without legs of the genus Ophisaurus, family of the Anguidae as the slowworm, present today in the Iberian Peninsula. The remains found include: a maxilla, three jaws, two parietals, numerous vertebrae and an osteoderm. The find is dedicated to Miguel Ángel Mancheño, Professor and paleontologist from the University of Murcia and former director of the Quibas excavations (Abanilla, Murcia), where the fossil remains that gave rise to the new species are from. Thus, the new lizard has been named Ophisaurus manchenioi. Judging by the recovered fossil remains, and the knowledge of the current lizards of this type, it is thought to have about 40 centimeters length.

The genus Ophisaurus is currently represented by other species living in the tropical and subtropical environments of North Africa (Morocco and Algeria), North America and Southeast Asia. The paleobiogeographic analysis of the genus shows that it appeared in Europe during the Eocene (56 and 34 million years ago), and that it had its maximum extension during the Miocene (between 23 and 5.3 million years ago). During the Pliocene (between 5.3 and 2.6 million years ago), its distribution in Europe was restricted to the Mediterranean. It survived longer in the south of the Iberian Peninsula, which apparently acted as a refuge area. The species eventually became extinct one million years ago, with its last mention in the site of Quibas, in Murcia.

vertebres-llangardaix-murcia-p

mandibula-llangardaix-murcia-p
Fossil remains of the new species of lizard discovered in Murcia – Author: IPHES

During the Pliocene (between 5.3 and 2.6 million years ago), its distribution in Europe was restricted to the Mediterranean. It survived longer in the south of the Iberian Peninsula, which apparently acted as a refuge area. The species eventually became extinct one million years ago, with its last mention in the site of Quibas, in Murcia.

“Until now, the fossil presence of this genus was known in other Early Pleistocene sites of the Iberian Peninsula, such as, Barranco León and Fuente Nueva 3 (Granada, Spain), but its key defining element -the parietal, a bone from the skull -was not available to compare it with the other fossil species defined from: this bone”, points out Hugues-Alexandre Blain, IPHES researcher and co-author of the scientific article that published the finding. “Osteologically, this new species is more closely related to the fossil species Ophisaurus holeci from the Miocene of Germany and the Czech Republic than to its modern North African representative (Ophisaurus koellikeri)”, he adds. “That is why we can say that it is a European relict species and that it does not come from a landbridge between North Africa and the South of the Iberian Peninsula”, he points out.

By comparison with the other extant species of the genus, it can be inferred that this reptile had tropical or subtropical ecological requirements. Its extinction at the species level in the Iberian Peninsula and in Europe coincides with the progressive disappearance of certain subtropical arboreal taxa (Cathaya, Elaeagnus, Engelhardia, Eucommia, Liquidambar, Keteleeria, Nyssa, Sciadopitys, Symplocos, Pretoria, Parthenocissus, Pterocarya and Tsuga). “Consequently, the extinction of this reptile is contemporary with the disappearance of the last haven with subtropical conditions (warm and humid forests) in southern Europe around 1.2 million years ago, during a period of very important climatic changes known at the transition from the Early to Middle Pleistocene”, notes Hugues-Alexandre Blain.

excavacions-quibas-p2
The Quibas excavations (Abanilla, Murcia) – Author: IPHES

Since its discovery in 1994, the paleontological site of Quibas (Abanilla, Murcia) has yielded, the fossil remains from more than 70 species of the late Early Pleistocene, around 1 million years old. “It is a karstic site whose importance lies in the great diversity of fauna, excellent preservation of the remains and the possibility of finding human evidence”, says Pedro Piñero, current co-director of the excavations in Quibas and collaborator of IPHES.

Remarkable also is the presence of fossil bones from: macaques, large felids, lynxes, foxes, musk oxen, goats, rhinoceros, deer, porcupines, bearded vultures, eagles (or ibis), as well as a long taxonomic list of small vertebrates, including: hedgehogs, mice, dormice, shrews, bats, snakes, vipers, geckos and agàmid lizards. “Research concerning these remains highlights the importance of this site, now with the presence of a new species previously unknown to the scientific community, as is the case of this new lizard,” says Pedro Piñero.

The studied material from this new lizard species was revealed from excavation campaign dating to 2006. Revision of these fossils is part of the new project, inscribed in the research project CGL2016-80000-P “Climatic crises of the Early and Middle Pleistocene and its incidence in the evolution of the microvertebrate communities of the Spanish Levante” and in the research group of the IPHES Human Paleoecology of Plio-Pleistocene (PalHum). AGAUR-Generalitat de Catalunya, 2017SGR-859.

Bibliographic reference

Hugues-Alexandre Blain & Salvador Bailon. 2019. Extirpation of Ophisaurus (Anguimorpha, Anguidae) in Western Europe in the context of the disappearance of subtropical ecosystems at the Early-Middle Pleistocene transition. Palaeogeography, Palaeoclimatology, Palaeoecology. https://doi.org/10.1016/j.palaeo.2019.01.023